

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

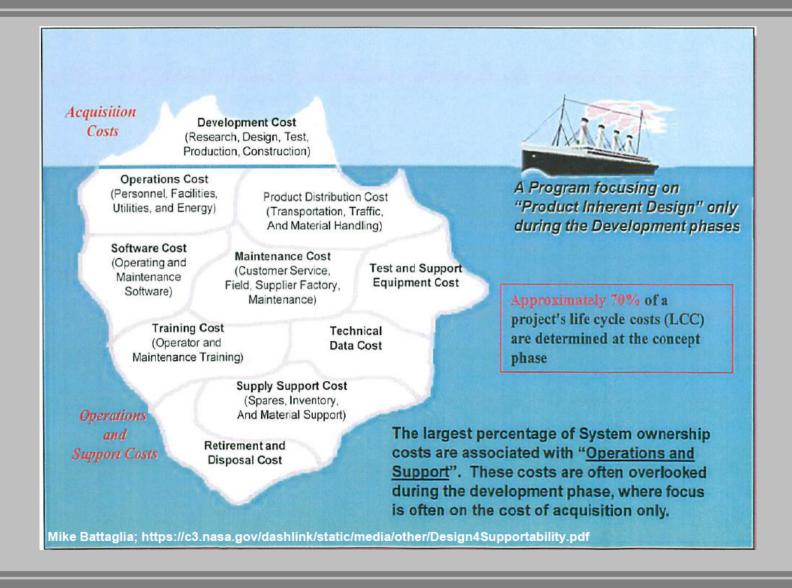
Emphasize Supportability During S&T (Pre-MS B) – An Update

Chia W. (Jeff) Lee Associate Director, Logistics Research and Engineering Directorate Army Futures Command

Distribution Statement A: Approved for Public Release. Distribution is Unlimited

Agenda

- BLUF
- Purpose
- Supportability Analysis Framework: LOGMAP
- Supportability Analysis Web Tool: LCIAT
- Update: Progress on LCIAT
- Update: Progress on S&T Projects


BLUF

- Two years ago, as a first-ever effort, Combat Capabilities Development Command Armaments Center (CCDC Armaments Center) developed two initiatives to ensure logistics/supportability is addressed Pre-MS B
 - ➤ LOGMAP is a comprehensive supportability management framework for Science and Technology (S&T) projects
 - ➤ The Life Cycle Impact Analysis Tool (LCIAT) is a software tool used jointly with LOGMAP to address life cycle cost drivers
- Benefits to all stakeholders:
 - ➤ Enhanced sustainment planning/preparation mitigation of Operation and Sustainment (O&S) risks
 - > Increased customer satisfaction
 - > Greater fidelity in developing alternatives in the trade space

Purpose

Purpose of This Initiative:

- Ensure logistic and supportability considerations are emphasized in CCDC Armaments Center S&T (Pre-MS B) projects
 - Currently a challenge for technology development projects to properly consider logistics/supportability elements
 - Incorporate the 12 product support elements Pre-MS B
- Integrate into the CCDC Armaments Center Technology Development (TD) Process
 - Details best business practices for maturing technology
- Allows for early identification of potential life cycle cost drivers/burdens
 - Allows the S&T project to design alternatives to lessen the burden the technology could impose once fielded/transitioned

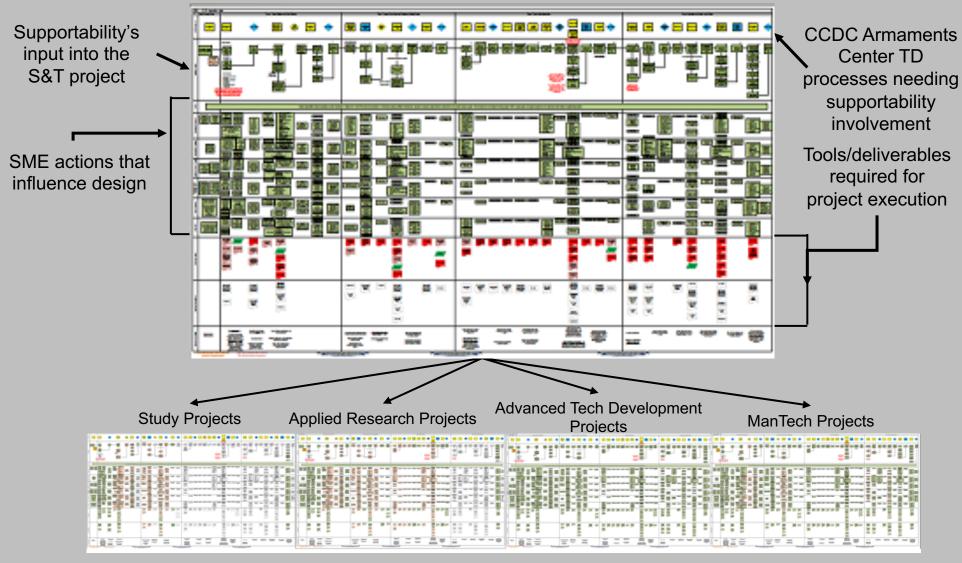
- Integrated into the CCDC Armaments Center Technology Development Process (ATDP)
 - ➤ ATDP systematically manages Pre-MS B TD project so requirements are well defined, quality engineering performed, and supportability elements analyzed earlier on
 - >Includes gate reviews to ensure project adherence to the ATDP
 - ➤ Increases transition partner's (PM) confidence on the maturity (affordability) of the technology
- LOGMAP was developed to identify when supportability assessments should be conducted on CCDC Armaments Center S&T projects
 - > Ensures logistics/supportability considerations addressed Pre-MS B
 - Tailored versions are developed to provide greater applicability and remove non-value added activities

Identifies which supportability assessments should be conducted prior to MS B - and when each should be conducted

Benefits:

- Identifies supportability concerns upfront
 - ➤ Can make changes to technology before design is finalized
 - ➤ Provides greater fidelity to the trade space identifying technology earlier so that costly redesigns can be avoided later on
- Provides a clearer picture of what to expect in O&S to PSMs
- Integrates CCDC Armaments Center supportability related entities into one POC (Supportability Project Officer) as the single point of contact for the integrated product team (IPT)

Tailored LOGMAP:


 Identifies actions that are required, not required, or situational

 Identifies questions/information needed to analyze supportability impact of the design

 Reduces the cost and schedule impact to projects by including only essential supportability assessments

Tailoring aspect represented by color coded level of involvement

Life Cycle Impact Analysis Tool (LCIAT)

Lessons Learned

Administrator Portal Logout

The Life Cycle Impact Analysis Tool aims to assist the U.S. Army Combat Capabilities Development Command (CCDC) Armaments Center S&T projects to track design decisions in order to assess potential life cycle cost drivers. These drivers present a risk for higher O&S and demilitarization costs in the long term. This tool is to be used in conjunction with the TD Process and help project teams to prepare for gate reviews.

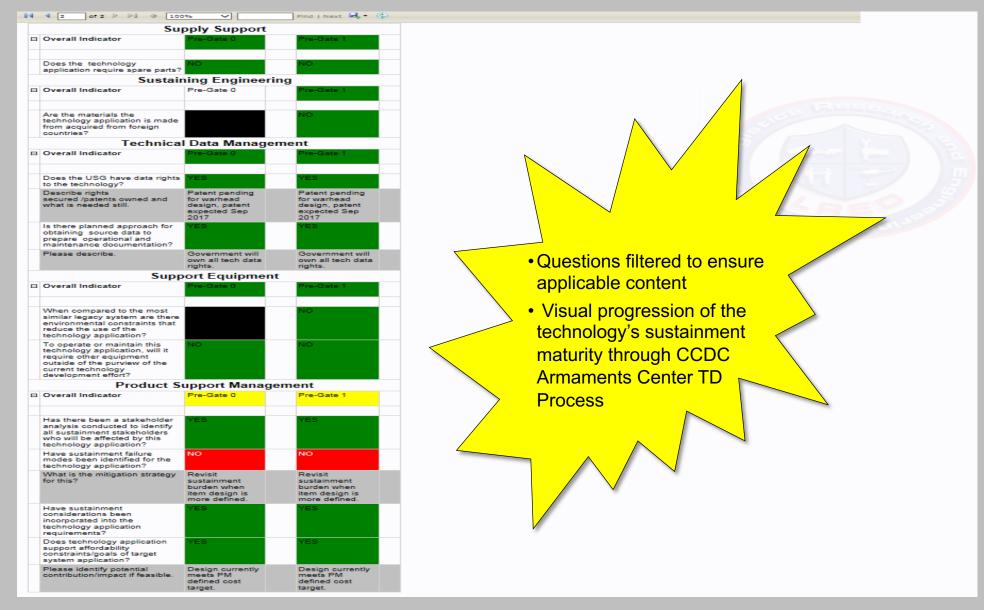
- Software tool to identify high risk areas for life cycle cost drivers
- Aids decision makers to make informed program decisions
- Allows project team to address life cycle cost drivers earlier in the life cycle (Pre-MS B)
- Web-based, question based, smart database

Enables early identification and resolution of potential life cycle cost drivers & burdens

LCIAT Deliverable – Potential O&S Impact Report

- Generated at major Gate and Technical Reviews
- Based upon a series of questions that are asked to the CCDC Armaments Center Project Officer (APO):
 - ➤ Questions derived from the 12 Product Support Elements, ILA, IPS document, PSM Guidebook, and SME lessons learned
- Provides indicators on potential O&S impact areas/burdens the technology will have
 - ➤ Provides decision makers with a tool to make informed choices
 - ➤ Provides opportunity to begin trade-off analysis
- Implemented into LOGMAP framework and CCDC Armaments Center TD Process

	•	Transporta	bility (ILA 3-6.	5)		
Θ	Overall Indicator	Pre-gate 1	Pre-gate PDR	Pre-gate 2	Pre-gate 3	Pre-FTDR
	Is the technology heavier than the analogous system?	Yes	Unknown/N.A.	Unknown/N.A.	No	No
	Is the technology larger, by width and height, than the analogous system?	Yes	Yes	Yes	Unknown/N.A.	No
	Does the technology require special transportation mode? For example, it can only be transported by xxx equipment.	Yes	Unknown/N.A.	Unknown/N.A.	No	No
	Does the technology require any waiver for highway or rail transportation?			Unknown/N.A.	Unknown/N.A.	No
	Manufacturing Sources and Materiel Shortages (ILA 3-3.3)					
Θ	Overall Indicator	Pre-gate 1	Pre-gate PDR	Pre-gate 2	Pre-gate 3	Pre-FTDR
	Does the technology require manufacturing capability that is dwindling in the US?		Yes	Yes	Unknown/N.A.	No
	Supply Chain Management (ILA 3-4.2)					
Θ	Overall Indicator	Pre-gate 1	Pre-gate PDR	Pre-gate 2	Pre-gate 3	Pre-FTDR
	The technology has not yet considered the end-to-end logistics chain sustainment.		Yes	Yes	Unknown/N.A.	No
	Packaging (ILA 3-6.2)					
Θ	Overall Indicator	Pre-gate 1	Pre-gate PDR	Pre-gate 2	Pre-gate 3	Pre-FTDR
	Does the technology contain hazardous material that require special packaging?		Yes	Yes	Unknown/N.A.	No
		Handlin	g (ILA 3-6.3)			
Θ	Overall Indicator	Pre-gate 1	Pre-gate PDR	Pre-gate 2	Pre-gate 3	Pre-FTDR
	Does the technology require special handling equipment that is not currently on the market		Yes	Yes	Unknown/N.A.	No



Supportability Project Officers

- Supportability Project Officers (SPO)
 - Single Point of Contact for all supportability related questions and taskers
 - Utilizes LCIAT and LOGMAP to project proper assistance to S&T project teams
 - Communicate results and information collected (risks, FMEA, other concerns) to PSI and PSMs when program transitions to PM management

LCIAT Update

- LCIAT has successfully demonstrated and released the Block 2.0 module in 2018 (2.1 being worked on and will be released July 2019)
- Added additional features such as allowing "customers" to comment on specific supportability elements
- Has expanded beyond class V projects into class VII projects
- Incorporated the SML calculator to help projects determine SML maturity

S&T Project Update

- Successfully inserted "SPOs" into 12+ S&T projects, covering four Army Cross-Functional-Teams (CFTs)
 - ➤ Long Range Precision Fire
 - Next Generation Combat Vehicle
 - > Future Vertical Lift
 - Soldier Lethality

S&T Project Update

Completed/In-Progress Analysis Areas:

- Packaging analysis and concepting earlier in the development life cycle
- Resupply process analysis:
 - ✓ Manpower impact
 - ✓ Resupply conveyance
 - ✓ Process design
 - ✓ CONOP Discussion
- > Transportability Analysis
- > Risk Assessment and Management
- ➤ Maintenance Considerations and Concepts
- Storage Concerns and Facilities Requirement

Summary

- LOGMAP and LCIAT are two CCDC Armaments Center initiatives that provide a holistic approach on emphasizing logistic/supportability considerations on CCDC Armaments Center S&T projects
- Both tools provide beneficial impacts to all stakeholders involved
- Each initiative can be leveraged for use on any technology development (TD) effort
- LCIAT is continued to be matured, with more capabilities to be added
- 2017, involved in one S&T project. 2019, involved in more than 12 S&T projects, spanning four Army Modernization S&T CFTs

Implementing innovative processes and tools to build supportability into our products

LOGMAP and **LCIAT** Points of Contact

Mr. Robert Rossi

Competency Director, Logistics Research and Engineering Directorate (LRED)

CCDC Armaments Center

973-724-2168

robert.a.rossi.civ@mail.mil

Chia wei (Jeff) Lee
Associate Director, Logistics Research and Engineering Directorate (LRED)

CCDC Armaments Center

973-724-3766

chia.w.lee2.civ@mail.mil